分部积分的公式

∫vdx=v-∫vdx

∫vdx=v-∫vdx。

分部积分

(v)=v+v

得:v=(v)-v

两边积分得:∫vdx=∫(v)dx-∫vdx

即:∫vdx=v-∫vdx,这就是分部积分公式

也可简写为:∫vd=v-∫dv

补充

不定积分的公式

1、∫adx=ax+C,a和C都是常数

2、∫x^adx=[x^(a+1)]/(a+1)+C,其中a为常数且a≠-1

3、∫1/xdx=lnx+C

4、∫a^xdx=(1/lna)a^x+C,其中a>0且a≠1

5、∫e^xdx=e^x+C

6、∫cosxdx=sinx+C

7、∫sinxdx=-cosx+C

8、∫cotxdx=lnsinx+C=-lncscx+C

求不定积分的方法

靠前类换元其实就是一种拼凑,利用f(x)dx=df(x);而前面的剩下的正好是关于f(x)的函数,再把f(x)看为一个整体,求出最终的结果。

分部积分,就那固定的几种类型,无非就是三角函数乘上x,或者指数函数、对数函数乘上一个x这类的,记忆方法是把其中一部分利用上面提到的f‘(x)dx=df(x)变形,再用∫xdf(x)=f(x)x-∫f(x)dx这样的公式,当然x可以换成其他g(x)。

分部积分法

微积分学中的一类重要的、基本的计算积分的方法。它的主要原理是利用两个相乘函数的微分公式,将所要求的积分转化为另外较为简单的函数的积分。根据组成被积函数的基本函数类型,将分部积分的顺序整理为口诀:“反对幂三指”。分别代指五类基本函数:反三角函数、对数函数、幂函数、三角函数、指数函数的积分。

营销型网站