二项式展开公式

(a+b)^n=a^n+C(n,1)a^(n-1)b+C(n,2)a^(n-2)b^2+...+C(n,n-1)ab^(n-1)+b^n

二项式展开公式

二项展开式是依据二项式定理对(a+b)n进行展开得到的式子,由艾萨克·牛顿于1664-1665年间提出。二项展开式是高考的一个重要考点。在二项式展开式中,二项式系数是一些特殊的组合数,与术语“系数”是有区别的。二项式系数最大的项是中间项,而系数最大的项却不一定是中间项。

二项展开式的性质

1、项数:n+1项;

2、第k+1项的二项式系数是Cₙᵏ;

3、在二项展开式中,与首末两端等距离的两项的二项式系数相等;

4、如果二项式的幂指数是偶数,中间的一项的二项式系数最大。如果二项式的幂指数是奇数,中间两项的的二项式系数最大,并且相等。

用数学归纳法证明二项式定理

证明:当n=1时,左边=(a+b)1=a+b

右边=C01a+C11b=a+b;左边=右边

假设当n=k时,等式成立,即(a+b)n=C0nan+C1na(n-1)b十…十Crna(n-r)br十…十Cnnbn成立;

则当n=k+1时,(a+b)(n+1)=(a+b)n*(a+b)=[C0nan+C1na(n-1)b十…十Crna(n-r)br十…十Cnnbn]*(a+b)

=[C0nan+C1na(n-1)b十…十Crna(n-r)br十…十Cnnbn]*a+[C0nan+C1na(n-1)b十…十Crna(n-r)br十…十Cnnbn]*b

=[C0na(n+1)+C1nanb十…十Crna(n-r+1)br十…十Cnnabn]+[C0nanb+C1na(n-1)b2十…十Crna(n-r)b(r+1)十…十Cnnb(n+1)]

=C0na(n+1)+(C0n+C1n)anb十…十(C(r-1)n+Crn)a(n-r+1)br十…十(C(n-1)n+Cnn)abn+Cnnb(n+1)]

=C0(n+1)a(n+1)+C1(n+1)anb+C2(n+1)a(n-1)b2+…+Cr(n+1)a(n-r+1)br+…+C(n+1)(n+1)b(n+1)

∴当n=k+1时,等式也成立;

所以对于任意正整数,等式都成立。

此定理指出

1、(a+b)^n的二项展开式共有n+1项,其中各项的系数Cnr(r∈{0,1,2,……,n})叫做二项式系数。

等号右边的多项式叫做二项展开式。

2、二项展开式的通项公式(简称通项)为C(n,r)(a)^(n-r)b^r,用Tr+1表示(其中"r+1"为角标),即通项为展开式的第r+1项(如下图),即n取i的组合数目。

因此系数亦可表示为杨辉三角或帕斯卡三角形

二项式定理(BinomialTheorem)是指(a+b)n在n为正整数时的展开式。

(a+b)n的系数表为

1n=0

11n=1

121n=2

1331n=3

14641n=4

15101051n=5

1615201561n=6

…………………………………………………………

(左右两端为1,其他数字等于正上方的两个数字之和)

补充

在中国被称为「贾宪三角」或「杨辉三角」,一般认为是北宋数学家贾宪所首创。它记载于杨辉的《详解九章算法》(1261)之中。在***数学家卡西的著作《算术之钥》(1427)中也给出了一个二项式定理系数表,他所用的计算方法与贾宪的完全相同。

在欧洲,德国数学家阿皮安努斯在他1527年出版的算术书的封面上刻有此图。但一般却称之为「帕斯卡三角形」,因为帕斯卡在1654年也发现了这个结果。无论如何,二项式定理的发现,在中国比在欧洲要早500年左右。

杨辉三角

1665年,牛顿把二项式定理推广到n为分数与负数的情形,给出了展开式,但并未给出进一步证明。

1811年,高斯对此进行了严格的证明,结果表明牛顿的猜想是正确的。

营销型网站